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Abstmct: NO+-induced gas phase ion-molecule reactions allow unambiguous cyclopropane ring location in linear 
aliphatic compounds through (NO)-twntaining diagnostic ion products. 

Gas-phase ion-molecule reactions in mass spectrometry have proved to be an efficient and sensitive 

approach to locate functional groups in long chain aliphatic compounds.r For instance, using NO+ as 

reagent species, methods for localization of a double bond in mono- or bifunctional olefin& 2 or an 

epoxide groups in similar straight chain compounds have been reported. 

Considering the presence of the cyclopropane functionality in many natural products4 and the lack of 

direct and specific metbodss to characterize and to locate the cyclopropane ring, except in the case of 

certain bifunctional molecules6, utilization of C&NO-MS has been investigated in this case.7 
According to the complete Cg-Cg series of model compounds and various members from Cl0 to C23 

examined, NO+ (produced from NO) again appears as an efficient reagent for the assignment of the 

position of the cyclopropane function. 

H-(CH2)mCy;CH-(CH2)nsH m<n 

CH2 

Besides the occurrence of molecular species (i.e: (M+NO)+, ((M+NO)-H20)+, M+- and (M-H)+ 

ions) as well as series of alkyl and alkenyl ions, two types of abundant even-mass diagnostic ions can be 
observed (Figure): i) one (or two complementary) ion(s) (al, a2), for example at m/z 88 and 102 for 

tr(uLF-4,5-methylenenonane, ii) a series of ions (bl, b2..) apparently resulting from the (M+NO)+ adduct 

ion by the loss of alkene neutrals of CxH2x type (x= 2, 3,..n), i.e. at m/z 114 and 128 for the same 

compound. All these even-mass ions are by their m/z values or distribution patterns clearly correlated to the 

cyclopropane position. 

Exact mass measurements* obtained through high resolution CI-NO-MS allowed us to determine the 
elemental compositions of ions a and h to be CxH2x+2N0 and CyH2yN0, 
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Figure: CI-NO mass spectra of isomeric rmnr-methylenenonanes. 

@ (r) and b (0) diagnostic ions). 

respectively. Preliminary MS-MS studies9 have been performed to determine the origin and structure of 

diagnostic ions a and b. Collisional activated dissociation (CAD) spectra obtained under low collision 

energy conditions from 5,6-methylenedecane (MW=154) as reference indicate the following: i) both types 

of ions result from the decomposition of the (M+NO)+ adduct ion (cf. CAD daughter ion spectrum of ion 

m/z ll34), ii) ions b and the adduct are homologues as shown by the similarity of the corresponding 

daughter ion spectra (i.e. loss of alkene neutrals and production of ions NH4+ , NO+ and m/z 46 (likely 

CH2=NH+OH)) and iii) there is no detectable intermediate involved in the decomposition of (M+NO)+ 

into B (cf. CAD parent ion spectrum of ion m/z 102 exhibiting only ion m/z 184 as precursor). 

Furthermore, the CAD daughter ion spectrum of ion m/z 102 giving rise to ions at m/z 69 (loss of 
NH20H) and m/z 46 (see above) as main daughter ions could be interpreted as corresponding to 

CHS(CH2)SCH=lUH+OH. This was confirmed by the identical CAD daughter ion spectrum obtained from 

protonated pentanal oxime (pentanal oxime under CINH3). 
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compounds (M+NO)+ (M-H)+ al a2 bl bz 

1,2-methyleneoctane 

runs-2,3_meth.-octane 

rrenr-3,4_meth.-octane 

rrans-4,5-me&octane 

c&4,5-meth.-nonane 

1 ,Zmeth.decane 

rmns-4,5-methdecane 

fmns-5,bmeth.decane 

tmns-7,&meth.-teaadecane 

trans-$6meth.-hexadecane 

cis-5,6meth.-hexadecane 

cis-9,10-meth.-tricosane 366 (100) 335 (3) 158 (1) 228 (< 1) 184 (3)C 198 (2) 

avbsc Occurrence of a second maximum at m/z 212 (2). 212 (3) and 254 (2), respectively. 

Table: Main ion species and their relative abundances from CENO-MS spectra of methylenealkanes. 

156 (8) 125 (12) 

156 (40) 125 (38) 

156 (94) 125 (66) 
156 (100) 125 (65) 

170 (82) 139 (42) 

184 (12) 153 (3) 

184 (100) 153 (36) 

184 (100) 153 (37) 

240 (100) 209 (9) 

268 (57) 237 (4) 

268 (70) 237 (5) 

46 (59) 

60 (79) 
74 (74) 102 (11) 

88 (70) 

88 (38) 102 (16) 

46 (60) 
88 (38) 116 (8) 

102 (31) 

130 (21) 

102 (24) 186 (1) 

102 (24) 186 (1) 

72 (13) 86 (100) 

86 (26) loo (100) 

100 (42) 114 (64) 

114 (66) 128 (18) 

114 (31) 128 (40) 

72 (12) 86 (100) 

114 (29) 128 (34) 

128 (44) 142 (26) 

156 (46) 170 (26) 

128 (26)a 142 (21) 

128 (31)b 142 (22) 

These data and observations from our model compounds (cf. Figure and Table) can then be 

rationalized as depicted in the following scheme. 

Obviously, ions g (e.g. H-(CH2)mCH=NH+OH and/or HO+HN=HC(CH2)n-II) should be 

sufficient as diagnostic ions to assign the cyclopropane ring position in any linear unknown aliphatic 

structure. Ions h would be necessarily considered for long chain (i.e., C 320) and remote end (i.e., 

position 8,9 or mote internal) cyclopropane containing molecules. Ion b distributions are then characterized 

by 2 maxima regarding the ion relative abundances which formally correspond to o-cleavage (accompagnied 
by H transfer) on either side of the cycloptopane. Note that in shorter chain (i.e., Cg-ClO) unsymetrical 

compounds allylic cleavage stemming from the longuest alkyl subs&tent is favoured. 

Interestingly, similar (NO)-containing ions as those mported herein can also appear on alkenes although in 

much lower relative abundances .tbv to However, the highly competitive production of other diagnostic 

acylium ions under specific experimental conditions 11~ t* make the differentiation between positionally 

identical aliphatic alkenes and cyclopropanes very easy. 
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Further studies are in progress to precise the application area of the proposed method, in particular in 

the frame of bi-(or poly)-functional systems as well as to provide more information on the mechanisms 

involved. 
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